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ABSTRACT
This paper presents a new finite difference scheme for the Stokes
equations and incompressible Navier~Stokes equations for low Reynold's
number. The scheme uses the primitive variable formulation of the equations
and is applicable with non-uniform grids and non-rectangular geometries.
Several other methods of solving the Navier—-Stokes equations are also examined
in this paper and some of their strengths and weaknesses are described. 9
Computational results using the new scheme are presented for the Stokes
equations for a region with curved boundaries and for a disc with polar

coordinates. The results show the method to be second-order accurate.
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SIGNIFICANCE AND EXPLANATION
: The incompressible Navier-Stokes equations describe the flow of many

common fluids such as water or air at low speeds. Thus numerical methods for

i solving these equations are very important for many scientific and engineering

applications. In this paper a new second-order accurate finite difference

T

% method for solving the incompressible Navier-Stokes equations is presented.
i An advantage of this new scheme over other methods is that it can be applied

with non-rectangular regions or non-uniform grids.

4
In this paper several other methods for solving the Navier-Stokes ;
equations are examined and some of their strengths and weaknesses are '

discussed.
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FINITE DIFFERENCE METHODS FOR THE
STOKES AND NAVIER-STOKES EQUATIONS

John C. Strikwerda

1. INTRODUCTION. In this paper we examine several common methods for
solving the incompressible Navier-Stokes equations by finite differences and
we present a new second-order accurate finite difference scheme for these
equations. This new scheme is designed to be applied with non-uniform grids
and non-orthogonal coordinate systems. Numerical experiments with the Stokes
equations illustrate the versatility and accuracy of the scheme.

% - The steady-state Stokes equations on a domain 8 in n? are given by
» +»>
920 + ¥p = £()
{(1.1)
>
v'u = g(x)

and the steady-state Navier-Stokes equations are

1

-V 4 @eha + T = Foo

{1.2)
Vea = g(x)

where R is the Reynolds number. We will consider the systems (1.1) and
f (1.2) with Dirichlet boundary conditions

(1.3) a(x) = b(x) on 99 .

A necessary gondition for (1.1) or (1.2) to have a solution is that the
data g(x) and b(x) satisfy the integrability condition

(1.4) [g=] Ben,
a a0

FY
where n is the outer unit normal to 3fl. For the mathematical theory of the
systems (1.1) and (1.2) we refer to Ladyzhenskaya (1963) and Teman (1979).

We will be concerned only wit} methods that solve the systems (1.1) and
(1.2) in the primitive variables u and p and not with methods such as the
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vorticity and stream=-function reformulation. Also our methods are applicable
in two or three dimensions although our examples will be only in two
dimensions.

We emphasize that the scheme presented here is designed to be easily
applicable with non-rectangular geometries and non-uniform grids. The vast
majority of papers on the numerical solution of the incompressible Navier-
Stokes equations limit themselves to examples using rectangular geometry and
uniform grids. By way of contrast, computations with the compressible Navier-
Stokes equations routinely use non-rectangular geometries and non-unifom
grids.

The outline of the remaining sections of the paper is as follows. 1In
Section 2 we discuss the strengths and weaknesses of some common approaches to
solving the systems (1.1) and (1.2) and in Section 3 we discuss finite
difference schemes for these systems. The finite difference integrability
condition is discussed in Section 4, and computational results are given in
Section 5. The numerical examples of Section 5 demonstrate that the new
scheme given here can be used to give second-order accurate solutions to the
Stokes equations for non-rectangular geometries. To our knowledge no other
finite difference schemes for the Stokes or incompressible Navier-Stokes
equations in the primitive variables have been shown to be second~order
accurate for non-rectangular geometries. Computations using the new scheme
for the incompressible Navier-Stokes equations are currently being made and
will be reported when complete.

2. SOLUTION TECHNIQUES. In this section we review some approaches to
solving the Navier-Stokes and Stokes equations numerically. Few researchers
have treated the system (1.2) in the given form, most have altered it in some
way. Before examining the altered forms of (1.2) we look at the system in the
given form.

The Stokes equations (1.1) and the Navier-Stokes equations (1.2) are
elliptic systems of n + 1 equations in n + 1 dependent variables. The
definition of an elliptic system, as given by Douglis and Nirenberg (1957),
requires that the determinant of the principle symbol of the system not vanish
for non-zero values of dual variables. For the Navier-Stokes equations the
determinant of the principle symbol is

% IEIZIn lz
(2.1) det - g2

£

which is non-zero for |§| # 0. Moreover, since the determinant is a
polynomial of degree 2n in the variables & = (£ _,...,§ ) the system
requires n boundary conditions at each point of the bouadary (Agmon, Douglis
and Nirenberg (1964)). These boundagy conditions will usually be Dirichlet or
Neumann conditions on the velocity u.
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One of the most common ways of modifying the Navier-Stokes equations

(1.2) is to replace it by the system

R s e+ ¥ = Fo
(2.2)
> -
Vzp = 601' + R 1V29 - z u: ui - \:069

i,3 34

The last equation of (2.2) is obtained by taking the divergence of the first
equation of (1.2) and then using the last equation of (1.2) to eliminate the
divergence of velocity. The system (2.2) has the advantage over (1.2) in
that, when discretized, it can be solved using standard methods for inverting
the discrete Laplacian. However, the system (2.2) has a grave disadvantage in
that it requires n + 1 boundary conditions, one for each elliptic equation,
as opposed to (1.2) which requires only n boundary conditions. Thus any
attempt to solve (1.2) via (2.2) would require some means of determining the
correct additional boundary condition. Without the correct condition
solutions of (2.2) will not be solutions of (1.2).

Roache (1972, p. 194) suggests that the additional boundary condition be
given by the normal derivative of pressure as determined by the first equation
of (1.2) or (2.2) evaluated on the boundary. This, however, is not
satisfactory as a boundary condition since it is not independent of the system
of differential equations. Roache's suggestion leaves the system (2.2)
underdetermined.

Another boundary condition which is commonly used along boundaries
corresponding to physical surfaces is to set the normal derivative of the
pressure to zero, which is valid in the limit for high Reynolds number flow.
With this boundary condition and (1.3) the system (2.2) has the proper number
of boundary conditions, however, its solutions are not solutions of (1.2).

As one would expect, the methods using (2.2) or similar systems have
difficulty with the accuracy of the pressure field and with satisfying the
incompressibilty condition on the velocities (see for example the work by
Boney, Hefner, Hirsh, and Zoby reported in Rubin and Harris (1975)).

The above mentioned difficulties are seen in computations with the time-
dependent Navier-Stokes equations as well. Roache (1972) has a discussion of
the difficulties of obtaining a zero divergence for the velocity field when
using the above approach for time dependent flows (see also Harlow and Welch
(1964)).

Because of these difficulties, it seems best not to use the derived
system (2.2) but to use the original system (1.2).

Another approach to solving the Navier-Stokes equations (1.2) is the
artificial compressibility method. The basic idea of this method is to solve
a time-dependent system of equations, whose steady-state solutions solve
(1.2), until a steady state is reached. Methods have been proposed by Chorin
(1967) and Yanenko (1967). The convergence rate of these methods is dependent
on the choice of finite difference method used to solve the system. Moreover,
as will be discussed in Section 4, it may happen that the finite difference




equations do not have a steady-state solution, so the method cannot
converge. Taylor and Ndefo (1970) reported difficulty in getting Yan:nko's
method to converge, most likely because there was no solution.

Another common method is to use the "parabolized" Navier-Stokes equations
in which the second-derivatives in the stream-wise direction are removed.
Because of its limited applicability and uncertain justification we will not
discuss this method here except to note that often an analogue of (2.2) is
derived and thus some of our observations on (2.2) also apply to the
parabolized equaitons. Raithby and Schneider (1979) discuss these
difficulties for three-dimensional flow problems.

3. FINITE DIFFERENCE SCHEMES. In this section we discuss the staggered
mesh and central finite difference schemes for (1.1) and (1.2) and introduce a
new scheme. The second-order accurate staggered mesh scheme for a uniform
cartesian grid assigns the values of each of the velocity components and the
pressure to different interlaced grids. In two dimensions with velocity
components u and v, one may assign values of u to grid locations

((i + l)h,jh), values of Vv to (ih,(j + l)h), and values of p to
2 2

(ih,3h), e.g. Harlow and Welch (1965), Patankar and Spalding (1972}, Raithbty
and Schneider (1979), Brandt and Dinar (1979). This method works very well as
long as the geometry is rectangular and the grid is uniform. Non-uniform
grids and grid mapping techniques cannot be conveniently handled.

The staggered mesh schemes also have some difficulty at boundaries. For
example, when both velocity components are specified at a boundary then that
velocity component whose mesh lines do not lie on the boundary requires some
special treatment.

The central difference scheme on a uniform rectangular mesh assigns
values of all the variables to each grid point. The divergence and gradient
operators are approximated using central differences and the Laplacian is
approximated by the standard five-point discrete Laplacian. Central
difference schemes have been used by Chorin (1967, 1968) in time-dependent
calculations.

An important concept for finite difference schemes for elliptic systems
such as (1.1) and (1.2) is that of regularity (see Bube and Strikwerda (1980),
and also Frank (1968), Brandt and Dinar (1979)). Regular schemes give rise to
reqularity estimates analogous to those in the theory of elliptic systems of
differential equations. Solutions to reqular difference schemes will in
general be smoother than solutions to non-regular schemes and also will be
more accurate approximations to the solutions of the differential equations.

The central difference scheme is non-reqular (Bube and Strikwerda
(1980)), which results in non-smooth solutions. The lack of smoothness is
most noticeable in the pressure. The staggered mesh scheme is regular. The
advantage of the central difference scheme is that it is eagsily implemented
with non-uniform grids as introduced by coordinate changes.

It should be emphasized that none of the difficulties mentioned above are

insurmountable. Both the staggered mesh and central differencing schemes have
been used and often quite successfully. However we will consider a new scheme
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which incorporates both regularity and ease of implementation with coordinate
grid mapping techniques.

Before introducing the new scheme we will discuss the concept of
regularity for difference schemes as given in Bube and Strikwerda (1980). A
difference operator A may be written as

Af(x) = ] a_(h,x)TVE(x) ,
Ly

where Tu

ey ————

is the translation operator given by

e

™ME(x,) = £x,, )

. ]
)
i for multi~indices VvV and u.
; The symbol of A is given by
fue
ath,x,8) = § a (h,x)e™ .

u

For example, the first-order central difference operator in the k-th
coordinate direction has symbol

eiCk _ e—iCk »
2hk - ihk sin Ck

; ' and the standard second-order accurate Laplacian in n-variables has the symbol

n
-2 21
- kz1 4hk sin 2 Ck .

A finite difference scheme for the Stokes equations is regular elliptic if the
determinant of the matrix of symbols of the scheme vanishes only for § equal
to zero modulo 2%. For the Stokes equations with central differencing, and
Ax = Ay = h, this determinant is

-2 2 1 2 1 -1
4h “(sin 2 51 + 8in 2 ;2 0 ih sin C1

-2 21 2 1 -1
det 0 4h “(sin 3 (1 + sin 2 Cz) ih 'sin ‘2

-1 -1
ih 'sin 61 ih 'sin Cz 0
-4 21 21 2 2
4h (sin 2 51 + sin 2 Cz)(sin C1 + sin Cz) .




This determinant vanishes for the dual variables {, 6 and §, equal to T,
and thus the scheme is not regular. One sees that the non-régularity comes
from the form of differencing used for the gradient and divergence terms. Our
new scheme is a modification of the central differencing scheme so as to make
the scheme regular.

The new scheme we consider will be called the regularized central
difference scheme. In this scheme the derivatives of pressure are
approximated as

3 - an2s &2
3, = S0P - on 8, S p

and the first derivatives of the velocity in the divergence equation are
approximated as

3uk

k 2 2 k
. —x § -
(3 3) aﬁ kou ahk6k+6k-u ’
where G is a non-zero constant and § _, § and § are the centered,

forward, and backward divided differences, respectively: The Laplacian is
approximated with the usual five-point scheme. For a cartesian grid in two
dimensions the determinant of the symbol is

21 2

-2 1
4h “(sin 2 C, + gin 2 Cz) 0 d(C1)
-2 21 21
det 0 4h “(8in 2 C1 + gin 3 (2) d(Cz)
- d(C1) - d(Cz) 0
I - | 21 2 2
4h “(sin” 5 T+ sin” 5 L) (AR )T + lag) 1)

where

1

a(¢) = th”'sin ¢ - an"'e21%(24 gin :} o3

1 1

- 1
= 2ih sin -;- t(cos % T+ 409/2 1csi.nz 3 Z) .

S8ince d({) is not zero for any value of [, when G is non-zero, the
scheme is regular. Note that for a equal to one-sixth the approximations
(3.2) and (3.3) are third-order accurate.

Since the regularized central difference scheme is a variant of the
central difference scheme it is easy to implement with coordinate maps. At
those boundary points where the correction term would require points beyond
the boundary we use the correction term which interchanges the forward and
backward operators. This scheme also requires the use of extrapolation to




compute the pressure values on the boundary. It has been found that third
order extrapolation gave quite good results, e.g.

at the boundary x = 0 in two dimensions.

A number of first-order accurate schemes for the Stokes and Navier-Stokes
equations have been presented e.g. Kzivickii and Ladyzhenskaya (1966) and
Temam (1979, p. 48). 1In this paper we are concerned only with second-order
accurate schemes.

4. THE INTEGRABILITY CONDITION. Each of the schemes for the Stokes
equations which have been discussed in the previous section can be written as

‘ ) Lau +8& £
1 a hh ¥ ShPn T fh
(4.1) on
b > > nh
}oDyw, %
with Dirichlet boundary conditions

> >
hoh o

The differnce operators L and D are approximatigns to the >
differential opetators ? he discrete functions £ , g,, and bh
are approximations to f, g and b on the mesh 9 where h is some
measure of the fineness of the mesh 9

Now let us compare the system {4.1) with the system (1.1). First note
that if G is a consistent approximation to the gradient then the discrete
pressure p, is determined only up to a constant. This means that the aystem
of linear equations (4.1) does not have full column rank. If there are as
many equations in (4.1) as there are unknowns, and this is the case for each
scheme we've considered, then the system (4.1) does not have full row rank ﬁ
either. This implies that there is a constraint which the data must satisfy
to guarantee a solution, in particular, the discrete integrability condition
analogous to (1.2) must be satisfied.

[EVRIN

EERRR X 3 SR . TR

! There are at least two ways to satisfy the discrete integrability
- condition. The first method would be to analyze the matrix corresponding to
i {4.1) and determine the null space of the adjoint matrix. If the data is
5 constrained to be orthogonal to this null space then a solution will exist.
This approach is impractical for many situations especially if coordinate
' changes have been employed since then the matrices are not easy to analyze.

A second approach, which will be adopted here, is to replace (4.1b) by
' 5 ’ + 6
L] =
(4.1b') % " % ]

where 6h is a constant chosen to guarantee a solution. The value of Gh

|
y
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must be determined as part of the solution. As shown in the example: in
Section 5 § is at least O(hz) for the regularized central scheme. We
will refer to the equations (4.1a, b', c) as (4.1').

It is interesting to note that for the staggered mesh scheme on a uniform
grid one can easily satisfy the discrete integrability condition since the
calculus of finite differences mimics the differential calculus very closely,
see e.g. Kzivickii and Ladyzhenskaya (1966). Also, Ghia, Hankey, and Hodge
(1977) mention being unable to obtain a solution to the discrete Navier-Stokes
equations for certain situations. We conjecture that this difficulty was
caused by the discrete integrability condition not being satisfied.

There is the possibility that the null space of the discrete operator of
(4.1) has dimension greater than one. The regularized central scheme with the
third-order extrapolation (3.4) appears to have only a one-dimensional null
space. However, for a equal to zero numerical experiments indicate that
there are so}utions which are effectively null vectors in that they solve
(4.1) with and smaller than the norm of the solution by a factor
proportional Qo h or h2. The dimension of the space of nearly null vectors
and null vectors appears to be four for the central differencing scheme.

There vectors correspond to the four zeroes of the determinant of the symbol
of t:he difference operator.

These nearly null vectors and null vectors, other than the usual constant
pressure null solution, make solving the discrete system very difficult. On
the other hand the regular discrete systems can be solved easily by the
iterative procedure given in Strikwerda (1982).

5. COMPUTATIONAL RESULTS. In this section we present the results of
testing the new scheme described in Section 3. In the examples discussed here
the discrete Stokes equations were solved using test problems which illustrate
various features of the schemes. For each example an exact analytical
solution is known and the approximate solutions were compared to the exact
solutions to study the accuracy of the method. The value of &, the
reqularity parameter, was one-sixth in all cases.

For the first test problem the Stokes equations were solved on the unit
square with a uniform grid. The exact soltion is

u = (2")-1sin ix cos Ty

(5.1) v = (2")-1 cos WX sin Ty
P = cos Tx cos Ty
&>
with f =0 and g = cos ¥x cos Ty. For this example both the accuracy and
symmetry of the solution were checked. The symmetry was checked to study the
effect of the nonsymmetric regularizing term on the symmetry of the

solution. The symmetry was measured by computing the quantities sym(u) and
sym(p) given by

.o
»r -V"‘ ;r“r""

w— b P — . " - "




N

sym(u) = ( Z (a,, +u, .
1,520 13 UN-1,N-3

\
122 /i,

(5.2)

eyn(p = () (By; = Pyo LS IV -
1'j=° J 1, J

for an (N + 1) x (N + 1) grid.,_, The quantity B is the average value of
the Pij and the norm is the & ~norm, e.qg.

2 W
'ul = ( X u, . 20
2 Ny 4

The second test problem demonstrates the ability of the scheme to produce
second-order accurate solutions on a non-rectangular region. The exact
solution is

u-£2+n2
v=-2£n+r\2
p = 4§ + 2n

on the region § which is the image of the unit square under the mapping
£ = x cosh(y)
n=y-x

for (x,y) in the unit square, i.e. 0 € x, y € 1. Thus the equations being
solved on the unit square were

+ +
xa(xsux)x xE(YEuy)x+YE(xE“x)y yE(yEuy)y
+ - - =
+ xp(xqu) + xn(ynuy)x + yn(xnux)y yn(ynuy)y XePy ~ YePy o
for the first equation, with the second being similar, and
+ + + =
Xgu, Yg“y XV ynvy 0
for the third equation. The regularizing terms were added only to the terms

corresponding to p in the first equation, py in the second, and u,

and vy in the third.

In the third test problem the Stokes equations were solved on a disc
using polar coordinates with uneven grid spacing in both the radial and
angular direction. The exact solution is




it — - W .

u = r3 sin 20
3
v = 2r° cos 20

p= 6:2 sin 260

<>
with £ and g being zero. The uneven grid was given by

2
r «75 Pi + .25 91

i

6, = -
3 wj 25 sgin ¢j

where ¢ and ¢, were evenly spaced in the interval [0,1] and [0,27]
respectively. This uneven spacing was chosen merely to show the versatility
of the scheme and is not intended to give a better resolution of the solution.

For completeness we give the Stokes equations in polar coordinates

-1 -2 -2 -2
r (rur)r +r Tugg - r "u-2r vy - P, = 0
-1 -2 -2 -2 -1
{(5.5) r (rvr)r +r Vggmrxr v+ 2r 'ug - r pg = 0
-1 -1
r (ru)r +r vy =0 .

The difference formulas used in the numerical experiments weye all second
order accurate. As an example of the formulas, the term r (rur)r was
differenced as

r +r r, +r
i+1 i i i-1 1.2 . .2
i L A S L

The results of the numerical experiments are shown in the following
tables. Each table lists the errors incurred for grids with N + 1 points on
a side for values of N of 20, 30, 40 and 60. Tables I, 1II and III list the
relative errors for test problems 1, 2 and 3, respectively, and Table I also
shows Ehe symmetry errors for problem 1. The relative errors are measured in
the £ -norm i.e.

1
err{u) = (Z (“ij - u(xi,yi))z)/2 /lul2 .

Also shown is the value of § which is described in Section 4. Table IV
displays the behavior of the error as the grid resolution is increased. The
numbers shown are values of

1og(etr1/etr2)

log(N1/N2)

-10=-




values of N.
=-35(=3) = .35 x 10

ST
TABLE I
N err(u) err(p) Eh

,ﬁ 20 +35(~3) 17(=2) -.44(=5)
1

a 30 «11(=3) .86(=3) -.89(=6)
| 40 .41(=4) «51(=3) -.53(=6)
!

E 60 19(-4) .23(-3) -.50(=7)

Errors for test problem 1 for grids with N + 1 points
The_gumbers in parenthesis are the decimal exponents i.e.

sym(u) sym(p)
+68(=3) «13(-2)
«22(-3) «37(=3)
+82(=4) «15(-3)
«37(-4) «52(-4)

on a side for four

kit

aaauia itk bl i

Lot 2l PN

ik gt

o

TABLE 11
N err(u) err(p) Eh
20 «10(~3) «21(=2) -.24(-3)
30 045(-4) '92(-3) -‘12(-3)
40 025(-4) 048(-3) -074(-4)
60 «11(~4) 022(-3) ~e35(-4)
Errors for test problem 2.
Table III
N err(u) err(p) éh
20 075(-1) .93(-1) -033(-2)
30 -33("’) 034(-,) -053(-3)
40 .19(-1) 018(-1) -015(-3)
60 «83(~2) «75(=2) -e27(-4)
Errors for test problem 3.
-11-
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TABLE IV

Lyl

o

-

Ny/N,

2.0

2.0

2.8

o~
o~ -

~ o
- <

30/20

2.0

3.4

o~
~N -

40/30

(-2 B 1]
¢ o o
NN

o -~
NN -

-~ -

L B ol o ]

3 o

40/20

2.0 2.0

2.1

2.5

2.2
1.8 4.3

1.9
4.2

60/30

2.0

2.0

1.9

2.2
4.2

1.9
1.8

2.0
5.8

60/40

-12-
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Computed order of accuracy for u, p, and 5h for the test problems.
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where err; and err are the errors for grids of N, + 1 and N, + 1
points on a side, respectively. This value should be approximately 2.0 for a
second-order scheme. The error reductions are shown for u, p and 6 . The
other velocity component had a similar error behavior in all the examples.

All of the solutions were computed by the iterative method given in Strikwerda
(1982).

That some of the errors were better than second-order accurate for test
problems 1 and 3 can be attributed to the third-order accurate difference
formulas used for the gradient and divergence terms. One might expect that
some of the errors would behave as third-order errors for some value of N,
and N,. However, since the discrete Laplacian is second-order accurate,
for N large enough the total scheme should be second-order accurate. It is
not clear why ¢ should behave as a fourth-order error as seen in test
problem 3 and for some values of N, and N, in test problem 1. Test
problem 2 was no better than second-order accurate since the gradient and
divergence were only second-order accurate. The third-order differences were
only used on those terms which were necessary to achieve regularity of the
scheme. The results show conclusively that the scheme has overall second-
order accuracy.

6. CONCLUSION. In this paper we have examined several finite difference
methods for the steady Stokes and incompressible Navier-Stokes equations in
primitive variables. We have shown that the regularized centered difference
scheme is second-order accurate and useful with non-rectangular regions.
Although the numerical experiments were done using the Stokes equations, for
which exact solutions were available, we believe the regularized central
scheme is equally useful with the incompressible Navier-Stokes equations at
moderate Reynolds number.
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